特集

靴・履物と転倒

平石 卓朗

群馬医療福祉大学リハビリテーション学部リハビリテーション学科理学療法専攻

キーワード

足部の機能 靴の選び方・履き方 転倒予防 審美性

I はじめに

転倒の危険因子は、生活環境要因を主とする外的要因と身体的要因を主とする内的要因に大別される¹⁾。外的要因は家屋構造や履物などの物的環境で、内的要因は身体的疾患、薬物、加齢変化等が該当し、相互的に作用することから、対象者に応じた多角的介入が必要である²⁾。本稿のテーマである靴や履物にも多角的介入が求められるが、対象者や家族介護者のみの判断で、専門家の見解を反映しないままで選択していることが少なくない。また多角的介入には、機能性よりも審美性を重視する方の心理面へのアプローチも含まれる。これらの諸点を踏まえて、本稿では靴と履物の関係を概説した後に、推奨される靴の選び方と履き方について触れる。さらに、審美性を重視する方への助言についても言及する。

本稿の内容が靴や履物に起因する転倒の減少につなげるための一助となれば幸いである。

Ⅱ 足部と履物の関係

履物は足部と不可分の関係にあるため、ここでは足部の基本的な構造や機能について触れた上で履物について概説する。ヒトの足部には、3つのアーチ構造が存在する(図1)。そのうちの1つ、内側アーチにより足部が地面に接しない部分は「土踏まず」と呼称される。3つのアーチは、地面に接地する際に衝撃を吸収し、地面を蹴る力を助けるバネの役割を担う。前者はトラス構造(図2-A)とよばれ、後者はウィンドラス機構(図2-B)とよばれている。

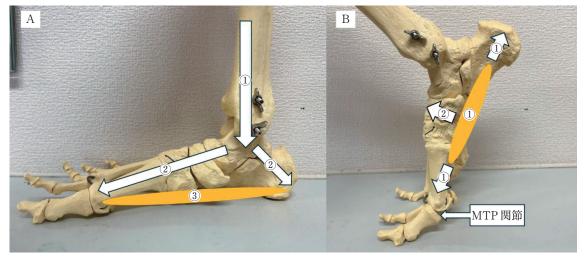
トラス構造は、足部にかかる荷重を分散し、足底部に対し圧を分散することで剛性を高める作用があり、姿勢

①は内側縦アーチ、②は横アーチ、③は外側縦アーチとなる。

図 1 ヒトの足部におけるアーチ構造 (株式会社ムーンスターのホームページより転載許可を得て引用 URL: https://www.moonstar.co.jp/aboutshoes/article/structure/adult.html)

の安定性に寄与している。重力に抗した立位姿勢は足圧中心の位置によって、身体全体のアライメントが制約を受ける³⁾ ことがわかっており、土台となる足部の位置が種々の姿勢戦略に関与しているといえる。しかし、歩行時には身体重心を支持基底面から外すことで推進力を構成するため、転倒リスクは増加する。

ウィンドラス機構は、歩行時に足趾のつけ根にあたる中足趾節(Metatarsophalangeal:MTP)関節(以下、MTP関節)が伸展することで、足趾から踵骨に付着する足底筋膜の緊張を増加させる。この機構により、足部の剛性を保ち、前方への推進を効率的に行うことができる。


履物は本来,足部を保護し,機能を補助する役割を持つ。一方で,足部を保護する目的で着用される靴が足部

連絡先:群馬医療福祉大学リハビリテーション学部リハビリテーション学科理学療法専攻 平石卓朗

〒 371-0023 群馬県前橋市本町 2 丁目 12-1 前橋プラザ元気 21 内 (6・7F)

TEL: 027-210-1294 E-mail: hiraishi@shoken-gakuen.ac.jp

受理日:2025. 6. 18

A:トラス構造 - 荷重(①)を分散(②)させ、足底筋膜(③)がクッションのように働く。 B:ウィンドラス機構 - 歩行時(立脚後期)に MTP 関節が伸展し、足底筋膜が伸張(①)することで、アーチが高くなる(②)。踏み出しの際には、伸張された足底筋膜の張力を利用し、推進力を構成する。

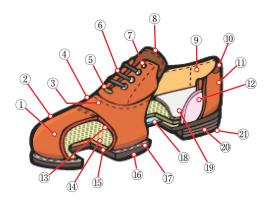
図2 トラス構造とウィンドラス機構(筆者が本稿の解説用に作成)

の機能を必要以上に代償し、本来の機能を低下させているという見解もある⁴⁾。以上のことから、履物は足部の機能のみならず全身の姿勢に影響を及ぼすため、履物の選定と使用方法を検討することは転倒予防に寄与する。

Ⅲ 履物と転倒の関係

日本において履物と転倒の関係性を陳述するにあた り、家屋構造や生活環境も視座に置く必要があるであろ う。多くの日本家屋では、屋内で着用する履物と屋外で 着用する履物を分けて使用している場合が多いと推察す る。屋内で着用することの多いスリッパは、居住空間を 隔てる目的で使用されるため、足部の保護や機能性より も着脱の容易さが優先される。故に、靴と比較するとそ の強度や安定性は担保されておらず、動作時のツールと しての用途は低い。スリッパを着用している状態での立 位姿勢は、足部の機能を制限し、足圧中心の移動範囲の 狭小、姿勢制御に対する反応力の低下をきたす可能性が 示唆されている⁵⁾。高齢者の転倒の原因として多い躓き や滑り 6) 等の現象は、スリッパの着用が転倒リスクに 直結していることを意味している。また、下肢筋力の低 下している高齢者におけるスリッパの着用は、足関節の 背屈が抑制され、ストライド長が短縮することで、躓き やすくなる可能性を示唆している⁷⁾ ことからも,移動 に適した履物とは言い難い。

靴下は清潔の観点、冷えや乾燥を防ぐ目的で使用する場合が多く、機能補助という観点で使用することは少ない印象を受ける。原田⁸⁾ はフットケアの観点から推奨される靴下として、綿やウールの素材のもの、クッション性があり厚手のもの、足趾のサイズや長さに合ったも


の、履き口部分のゆったりしたもの、内側に縫い目のないものが好ましいと述べている。

靴下を着用し室内を移動する場合,靴下の素材と床面の素材の相性によっては滑りやすくなる可能性がある。対策として、足底面に滑り止めの加工がされている靴下は滑りの防止にはなるが、別の側面から捉えると、床面の材質によっては、過剰な制動がかかり、躓くリスクは増加することになる。また、通常の靴下では、足趾の可動性は制限され、姿勢戦略をとりづらくなる。対策として、5本指タイプの靴下を着用することで支持基底面の拡大や動的バランス能力は向上し、姿勢制御に影響を及ぼす可能性が示唆されている⁹⁾。注意すべき点として、足趾の長さに合った靴下を選択しないと、足趾の機能補助としての効果は期待できないだけでなく、機能を制限してしまう可能性がある。日本の生活様式において、靴下は移動時の履物として捉え、靴下の形状と床面との相性を考慮し、機能性に目を向けることを推奨する。

屋外では、サンダルや靴を着用している場合が多いと 推察するが、サンダルはスリッパと同様の理由で移動に 適した履物としては推奨しない。屋内と比較して不整地 や段差等も多く、より巧緻な姿勢制御が求められること から靴の着用が推奨される。

詳細は専門書に譲るが、一般的な靴の構造を示す (図3)。大別すると甲部にあたるアッパーと底部にあたるソールとなる。アッパーは足部の固定性や圧迫力を発揮するための構造であり、ソールは地面からの足部保護とともに、緩衝作用ならびに発生する力を修飾する役割を担う。靴には、足の保護や動作の円滑化といった役割があり 100、求められる機能として、安定性、屈曲

1	ボックストゥ(Boxtoe)先芯	11)	クォーター(Quarter)腰革
2	トゥキャップ(Toe-cap)飾り革	12	カウンター(Counter)月型芯
3	ソーイング・スレッド(Sewing thread)縫い糸	13	バンプライニング(Vamp lining)先裏
4	バンプ (Vamp) つま先革	14)	イン・ソール (Insole) 中底
(5)	リ-インフォーシング・ローズ (Reinforcing rows)	15)	フィラー(Filler)中物
	しゃこ止め	16)	アウトソール(Out sole)本底または表底
6	レース (Lace) 靴紐	17)	ウェルト (Welt)
7	アイレット(Eyelet)鳩目	18	シャンク(Shank)踏まず芯
8	タン(Tongue)舌革	19	中敷き (sock lining)
9	クォーターライニング (Quarter lining) 腰裏	20	ヒールリフト(Heel lift)積上げ
10	バックステェイ(Back stay)市革	21)	トップリフト(Top lift)化粧

①~⑬までがアッパー, ⑭~②までがソールとなる2層構造である。

図3 一般的な紐靴の構造(株式会社ムーンスターのホームページより転載許可を得て引用 URL: https://www.moonstar.co.jp/whatshoes/knowledge/name.html)

性,衝撃緩衝性,グリップ性,軽量性,通気性,フィット性,耐久性の8つが挙げられる¹¹⁾。靴の選定や履き方によって即時的に靴の機能向上が図れるため,専門職によるマネジメントが奏功する。そこで,専門職が靴のフィット性を改善させるための手段として,以下,靴の選定と靴の履き方について解説する。

1. 移動に推奨される靴の選び方

足に合わない靴を履くことは、足趾の変形や足部の創傷発生に関与すると同時に、足部の機能を阻害してしまうことから、立位や歩行時の不安定性につながることが懸念される。例えば、靴のつま先が上がっている部分の基点(以下、ボール部)と MTP 関節の位置にズレが生じている場合や、靴内で足部が過度に動いてしまう場合など、MTP 関節の伸展が制限されるために、ウィンドラス機構が十分に働かない。ウィンドラス機構の制限が起こると、足部の剛性を高めることができないため、歩行時の推進力低下をきたす。また、ソールに含まれる芯(以下、シャンク)が入っていない靴はアッパーの素材も柔らかい傾向にあるため、靴は容易に変形し、足部への局所的なストレスが負荷される。靴を選定する際に、ボール部とシャンクの強度を確認しておくことを推奨する(図4、5)。

MTP 関節の部分で屈曲するが、アッパー全体は崩れることなく形状が変わらない。

図4 ボール部(赤い丸で囲われた部位)の確認(筆者が本稿の解説用に作成)

靴を捻転(赤い矢印)させ確認を行う。シャンクがない場合, アッパーは捻じれ,容易に変形する。

図5 シャンクの確認 (筆者が本稿の解説用に作成)

自身の足部に合った靴を選定する前提として、自身の足部を知る(評価)ことが必要である。日本の靴のサイズは、「足長」と「足囲」を元に、日本産業規格(JIS)で靴のサイズが定められているため、「足長」だけではなく「足囲」を測定することが重要である。しかしながら、自身に合った靴を試着し、自らの感覚で確かめるという一連の流れが、病院や施設で過ごす高齢者にとって、身近であるとは言い難いであろう。このため、足のサイズを実際に計測し現在の身体的な状態に応じた履物を選定するまでに至っていないことが推察される。靴の選択基準として「ゆとりがある靴」「脱ぎ履きがしやすい靴」など、高齢者は自覚サイズよりも大きい靴を好むことが報告 120 されており、靴の選択と正しい履き方に関して、介助者によるサポートが必要である。

実際の靴選びには、左右差はもちろん、趾先の長さや形状の違い、足部の筋や脂肪の状態、甲の高さや踵の形状を加味する必要がある。近年、自宅でも気軽に計測できるモバイル計測手法 ¹³⁾ やオンライン上でフィッティング評価や靴選びのサポートを受けられるサービス ¹⁴⁾ がある。

最後に、特別な機器や場所に限らず専門職でなくても 簡易的に足部の計測を行うことができる方法を紹介する (図 6)。

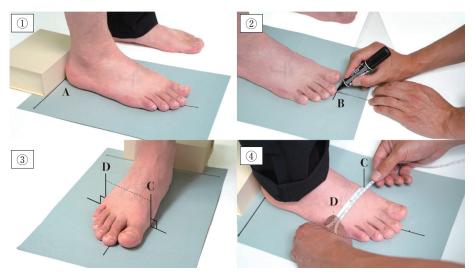
基準線:紙に直角に交わった線を引き、紙の上に直立の姿勢で立つ。踵の端を縦横の線が交わる点(A)に合わせ、示趾の先端を線に合わせる(図6-(1))。

足長:定規を縦に引いた線と趾先に当たるように合わせる。縦線と定規が交わったところに印(B)をつける

 $(\boxtimes 6 - (2))_{\circ}$

足幅:母趾の関節部分の頂点(C)と,小指の関節部分の頂点(D)をつなぐ(図6-③)。

足囲: $(C)\cdot (D)$ に合わせてメジャーで周囲を測る(図 6-(4))。


2. 高齢者の歩行に推奨される靴

高齢者の歩行時に着用が推奨される靴の条件を挙げる (図7)。自身の足部にフィットしているか否かの評価基準では、靴を履いた状態で立ち上がり、まずは静的立位で足部の違和感や疼痛の有無を確認する。次に、動的な評価として、歩行中の足部の違和感や疼痛、踵部のズレを確認することが重要である。直接的な訴えがない場合でも、靴のフィット感が姿勢や歩容の変化として現れる場合もあるため、専門職が観察を行うことは、予防的介入という側面も有する。

3. 推奨される靴の履き方

高齢者の靴を選定する場合、介護者が履かせやすい靴であるかという側面も考慮するべきであろう。自身の足に合った靴を選択できても、正しい履き方ができていない場合は、靴の機能を十分に発揮することができないだけでなく、転倒リスクにもなり得る。そこで、著者が靴の履き方を指導する際に用いている資料を紹介する(図8)。

図中の工程において特に重要な項目は、アッパーの固定と踵骨の制動といえる。正しい履き方によりアッパーの固定と踵骨の制動が実現している場合、歩行時に靴内で足部が過度に動いてしまうことが防止されるため、動的バランスを制御しやすい(図9.10)。加えて、つま

A-B 間の長さが「足長」、C-D 間が「足幅」、C-D の周径が「足囲」

図 6 簡易的な足部の計測(株式会社ムーンスターのホームページより転載許可を得て引用 URL:https://www.moonstar.co.jp/aboutshoes/article/size/basic.html)

- ①トゥスプリングがついている
- ②1cm程度のヒール高
- ③適度な硬さのヒールカウンター
- ④はと目が5個以上ある
- ⑤着圧の調整ができる締め具
- ⑥履き口が変形していない (楕円形)
- ⑦凹凸があり耐滑性のあるソール

一般的な紐靴における、転倒予防を考慮した歩行を想定した際の靴の構造的条件を①~⑦ で示している。

図7 歩行に適した靴の条件(筆者が本稿の解説用に作成)

②履き口を大きく開く

③足を入れ、足関節を90度 ④タンを引き出す にして, 踵を合わせる

めていく

⑤靴の先端から靴紐を締 ⑥甲を抑えながら靴紐を 締める

くり, しっかり締める

⑦タンの中央で結び目をつ ⑧立つ,歩く時に,足が動 きすぎないか確認する

一般的な紐靴における靴の履き方の指導用資料として使用している。履く手順は① → ⑧の工程が望ましい。

図8 靴の履き方(筆者が本稿の解説用に作成)

先部分に1cm程度余裕(捨て寸)があるかを確認し、 5本の指が自由に動く状態になることが理想である。締 め具として、固定性の観点から紐靴を推奨するが、側方 のチャックで開閉できるタイプやベルクロで折り返しで きるテープタイプの靴は着脱の容易さを兼ね備えた構造 であるため、高齢者にも使用しやすい靴であるといえ る。

靴のフィット性に関して、武末ら 15 は、接触圧の高 さが一様に主観的な快適感につながるものではないこと を報告しており、靴内部の環境が重要であると述べてい る。著者らは健常成人を対象に、被験者の足部を評価 し、個別に合った靴の選定を行った。選定した靴で、靴 の履き方を指導した前後での歩行を比較した結果、指導 後では、足部内圧は上昇し、歩行速度が向上する可能性

静的立位で荷重をかけた際に、ヒールカウンターが変形する ことなく、踵部は中間位を保つ。

図 9 前額面後方からの靴の観察 (筆者が本稿の解説用に作成)

が示唆された。歩行速度は転倒の予測因子であることが 示されており¹⁶⁾,個別に靴を選定し,靴を正しく履く ことは,転倒予防に大きく寄与する可能性がある。

IV 審美性を重視する方への助言

靴はTPOに合わせた服装の一部であり、靴の選定をサポートする際、機能性に傾倒すると「履きたい靴」でなくなってしまう可能性があることに留意すべきである。無論、履物は、前述したような安全性やフィット性を重視して選択されるべきだが、ファッションアイテムとして審美性(おしゃれ)を重視する方も少なくない。履物を選択する基準として、デザイン性は機能性と同等かそれ以上に加味すべき項目である。そもそも個人の足に合った靴を提案し、履き方を指導したところで、自身が「履きたい靴」でなければ、指導内容としては不十分である。

読者の皆様も経験があると思うが、靴を選択する際にディスプレイに並べられた実物でも、インターネット上の画像であっても、靴の外観をみて第一選択を行う場合が多いのではないだろうか。その後、自身の足に合ったサイズを選択し、試着するという一連の流れがあって初めて、機能性に着目するといえる。言い換えれば、自身に合った靴を試着する前段階に審美性は存在する。試着して履き心地が良好であったため、「履きたい靴」になる場合もある。正しい靴の選択が歩行の自信につながり、閉じこもりの傾向が改善された症例も報告されている 177 。

近年の気温上昇の影響もあり、スリッパやサンダル等 の踵のない履物は蒸れにくさや着脱の容易さで選択され

靴のボール部と MTP 関節の位置に大きな差異がなく、踏み返しが起こっている。

図 10 歩行時の足部と靴の適合性評価(筆者が本稿の解説 用に作成)

ることが多い。踵のない履物について、商品のカラーリングやデザインは多岐にわたっており、ファッションアイテムとして取り入れる機会も増えている。

上述した内容と矛盾を感じるかもしれないが、専門職や家族介助者は足に合っていない靴や踵のない履物を頭ごなしに否定するのではなく、履きたいと思える履物の中から選択してもらうことが靴を正しく履く工程にも影響を与えると考える。審美性を重視して靴を選択する感覚は、至極当然のことであるといえるが、転倒予防の観点からいえば、自身の足に合っていない靴を履き続けることで歩行の不安定性や足部・足趾の創傷・疼痛・変形を助長させる可能性がある。このため、必要な情報を提供し、個人の好みや価値観に寄り添った上で、専門職や家族介助者は靴の選択をサポートする関わりが必要である。

V 転倒予防を実践するにあたって

専門書や講演での啓発が奏功して、履物と転倒の関連は医療従事者だけでなく、家族介助者の理解も進んでいる印象を受ける。病院や施設において本人や介助者の視点に立つと、着脱の容易さは優先されるべき項目である。臨床の現場で、紐靴では難しいが、踵のない履物であれば着脱が自立する症例も散見される。このような症例に対して、紐靴を勧めることは離床機会を奪い、機能低下を助長しかねない。これではいくら靴の選定や靴の履き方の重要性を論じても、本末転倒である。履物は本来、足部の機能を補助し、移動時の転倒予防に貢献するツールの一つである。このため、履物の利便性と機能性は、対象者の機能や能力に応じて比重を変化させてい

く必要がある。つまり、一般的な補助具や補装具と同様 に、対象者の自立度や活動量に応じて履物を段階的に変 化させていくことを推奨する。

VI おわりに

今回,靴・履物と転倒について足部の機能を概説した上で,靴の選び方から履き方まで論述した。履物の適切な選択と適切な使用は転倒予防において大きな予防戦略となり得る。また,介助者がサポートすることでマネジメントできる因子である。高齢者の場合,靴を選択する場合に履きやすさを最優先している傾向にあるため,足部の評価を行い,屋内外問わず靴の着用を推奨していくことが望まれる。

• 引用文献

- 1) 鈴木隆雄. 転倒・転落の疫学. 総合リハ. 32(3): 205-210, 2004.
- 武藤芳照,鈴木みずえ,萩野浩,大高洋平. 転倒 予防白書 2023. 日本医事新報社,東京,2019,p97.
- 3) 福井勉. 姿勢制御について. 理学療法学. 13: 2-6, 2006.
- 4) 坂口顕. 理学療法士のための足と靴の診方. 文教 堂, 東京, 2017, p 29.
- 5) 竹沢友康. 腰椎圧迫骨折後患者の足部環境が静止 立位に及ぼす影響の検討―裸足・スリッパ・リハ シューズの3条件での検討―. 理学療法とちぎ. 3 (1):21-24,2013.
- 6) 鈴木隆雄. 転倒・転落の疫学. 総合リハ. 32(3): 205-210, 2004.
- 7) 齋藤誠二, 田中翔子, 松本和也. スリッパの着用 が歩容に与える影響. 人間工学. 48(5): 266-273, 2012.
- 8) 原田和子. 靴の選び方・履き方・歩き方. 糖尿病

- ケア. 14(3):254-258, 2017.
- 9) 畑迫茂樹, 杉山省二, 横地由大. 5本指ソックス が静的および動的バランスに及ぼす影響. 中部リハ 雑誌. 12:13-16, 2017.
- 10) 櫻井一男. 正しい靴の選び方. 日本フットケア学会雑誌. 16(1):28-30,2018.
- 11) 西脇剛史. スポーツシューズの要求機能と使用素 材. 繊維学会誌. 65 (5): 150-153, 2009.
- 12) 長谷川正哉, 島田雅史, 積山和加子, 島谷康司, 金井秀作, 田中聡, 沖貞明, 大塚彰. 高齢者が自覚 する靴サイズ, 着用する靴サイズ, 足型に基づく靴 サイズの相違. 理学療法の臨床と研究. 24:9-12, 2015.
- 13) 草野拳, 市川将. 「足の計測と靴のフィッティング」(2) 足の計測技術. バイオメカニズム学会誌. 46(4):251-256, 2022.
- 14) 鏡味佳奈,仲谷政剛.「足の計測と靴のフィッティング」(3) 靴のフィッティング.バイオメカニズム学会誌. 47(1):75-80, 2023.
- 15) 武末慎, LOH Ping Yeap, 古達浩史, 村木里志. 靴の種類の違いが歩行中の足甲接触圧に与える影響 ビジネスシューズおよびウォーキングシューズを例 に. 人間工学. 57 (2): 70-77, 2021.
- 16) Nascimento MM, et al. Associations of Gait Speed, Cadence, Gait Stability Ratio, and Body Balance with Falls in Older Adults. Int J Environ Res Public Health. 19 (21): 13926, 2022.
- 17) 大山大将,池田耕二,黒岡禎治,廣瀬将士,吉富滋洋,高本晴加,勝久江,池田秀一.デイケア(通所リハ)において閉じこもり傾向にあった高齢利用者に対する行動変容理論の実践—3事例の物語分析から得られた実践知.地域リハビリテーション.15(1):54-59,2020.